Molecular Signature of Pseudomonas aeruginosa with Simultaneous Nanomolar Detection of Quorum Sensing Signaling Molecules at a Boron-Doped Diamond Electrode

نویسندگان

  • Alyah Buzid
  • Fengjun Shang
  • F. Jerry Reen
  • Eoin Ó Muimhneacháin
  • Sarah L. Clarke
  • Lin Zhou
  • John H. T. Luong
  • Fergal O’Gara
  • Gerard P. McGlacken
  • Jeremy D. Glennon
چکیده

Electroanalysis was performed using a boron-doped diamond (BDD) electrode for the simultaneous detection of 2-heptyl-3-hydroxy-4-quinolone (PQS), 2-heptyl-4-hydroxyquinoline (HHQ) and pyocyanin (PYO). PQS and its precursor HHQ are two important signal molecules produced by Pseudomonas aeruginosa, while PYO is a redox active toxin involved in virulence and pathogenesis. This Gram-negative and opportunistic human pathogen is associated with a hospital-acquired infection particularly in patients with compromised immunity and is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. Early detection is crucial in the clinical management of this pathogen, with established infections entering a biofilm lifestyle that is refractory to conventional antibiotic therapies. Herein, a detection procedure was optimized and proven for the simultaneous detection of PYO, HHQ and PQS in standard mixtures, biological samples, and P. aeruginosa spiked CF sputum samples with remarkable sensitivity, down to nanomolar levels. Differential pulse voltammetry (DPV) scans were also applicable for monitoring the production of PYO, HHQ and PQS in P. aeruginosa PA14 over 8 h of cultivation. The simultaneous detection of these three compounds represents a molecular signature specific to this pathogen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of the Pseudomonas Quinolone Signal (PQS) by cyclic voltammetry and amperometry using a boron doped diamond electrode.

2-Heptyl-3-hydroxy-4-quinolone, known as the Pseudomonas Quinolone Signal, is a key regulator of bacterial cooperative behaviour known as quorum sensing. A simple electrochemical strategy was employed for its sensitive detection using a bare boron-doped diamond electrode by cyclic voltammetry and amperometry. PQS (and potentially other quinolones) was then detected in cultures of P. aeruginosa ...

متن کامل

Low concentrations of local honey modulate ETA expression, and quorum sensing related virulence in drug-resistant Pseudomonas aeruginosa recovered from infected burn wounds

Objective(s): Honey’s ability to kill microorganisms and even eradication of chronic infections with drug-resistant pathogens has been documented by numerous studies. The present study is focused on the action of honey in its sub-inhibitory levels to impact on the pathogens coordinated behaviors rather than killing them. Materials and Methods:</strong...

متن کامل

Electrochemistry provides a point-of-care approach for the marker indicative of Pseudomonas aeruginosa infection of cystic fibrosis patients.

It has recently been demonstrated that 2-aminoacetophenone (2-AA) is a chemical indicator in exhaled air/breath of Pseudomonas aeruginosa infection associated with progressive life threatening decline of lung function in cystic fibrosis sufferers [Scott-Thomas et al., BMC Pulm. Med., 2010, 10, 56]. Currently the detection of 2-AA involves laboratory based instrumentation such as mass spectromet...

متن کامل

Quorum Sensing in Microbial Virulence

Cell-to cell communication occurs via a signaling pathway referred to as quorum sensing. There are four main types of these systems according to the chemical nature of signal molecules used by microorganisms to elicit expression of target genes in response to environmental stimuli or need of microbial communities. Type I system acts by using acyl homoserine lactones as signals to trigger the ex...

متن کامل

Electrochemical inactivation kinetics of boron-doped diamond electrode on waterborne pathogens.

A boron-doped diamond (BDD) electrode was constructed as a water disinfector for the inactivation of water borne pathogens. The bactericidal effect of the disinfector was evaluated on artificially contaminated waters containing, respectively, Escherichia coli, Pseudomonas aeruginosa and Legionella pneumophila at high density. By treating the bacterial suspensions with 4 V of constant voltage be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016